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Abstract

The objective of the study is to investigate the potential of retrieving superficial soil
moisture content (mv ) from multi-temporal L-band synthetic aperture radar (SAR) data
and hydrologic modelling. The study focuses on assessing the performances of an
L-band SAR retrieval algorithm intended for agricultural areas and for watershed spa-5

tial scales (e.g. from 100 to 10 000 km2). The algorithm transforms temporal series of
L-band SAR data into soil moisture contents by using a constrained minimization tech-
nique integrating a priori information on soil parameters. The rationale of the approach
consists of exploiting soil moisture predictions, obtained at coarse spatial resolution
(e.g. 15–30 km2) by point scale hydrologic models (or by simplified estimators), as a10

priori information for the SAR retrieval algorithm that provides soil moisture maps at
high spatial resolution (e.g. 0.01 km2). In the present form, the retrieval algorithm ap-
plies to cereal fields and has been assessed on simulated and experimental data. The
latter were acquired by the airborne E-SAR system during the AgriSAR campaign car-
ried out over the Demmin site (Northern Germany) in 2006. Results indicate that the15

retrieval algorithm always improves the a priori information on soil moisture content
though the improvement may be marginal when the accuracy of prior mv estimates is
better than 5%.

1 Introduction

The monitoring of the spatial and temporal distribution of soil moisture content (mv )20

is of major importance for a better understanding of the water cycle on land surfaces
with an impact on several applications ranging from drought and flood prediction (e.g.
Hong and Kainay, 1996; Pauwels et al., 2002) to meteorology (Betts et al., 1996) and
agriculture (Bastiaanssen et al., 2005). Due to the high sensitivity to soil moisture
content (e.g. Du et al., 2000), microwave remote sensing holds a great deal of potential25

for the retrieval of mv . In fact, considerable progresses have been made on the use
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of passive microwave remote sensing systems (e.g. Jackson et al., 1993; Kerr et al.,
2001; Njoku et al., 2003; Shi et al., 2006; Loew, 2008) to measure superficial soil
moisture content at coarse spatial resolution (e.g. 15–50 km2). On the contrary, the
use of SAR data for the retrieval of soil moisture maps at high spatial resolution (e.g.
2.5–90 10−3 km2) has been generally limited up to date and no operational algorithm is5

yet available, while numerous research approaches exist (for a review see Moran et al.,
2004). An important part of the limitations to monitor superficial soil moisture contents
by means of SAR systems, is due to the fact that the observed backscatter significantly
depends not only on soil roughness, soil moisture and plant water content but also on
crop structure. As a consequence, there generally exist many combinations of surface10

parameters mapping the same SAR observable, so the retrieved “optimal” solution –
e.g. most probable or minimum root mean square (rms) error – may be characterized
by poor accuracy (Satalino et al., 2002). This problem can be tackled by introducing
a priori information about the surface parameters and using multi-temporal SAR data
(Mattia et al., 2006).15

In this context, the objective of this paper is to assess an algorithm for the retrieval, at
high spatial resolution, of superficial soil moisture content underlying agricultural crops
from multi-temporal L-band SAR data and hydrologic modelling. The higher penetration
of L-band SAR signal into the canopy, with respect to shorter wavelengths such as C- or
X-bands, reduces the sensitivity to vegetation constituents and is expected to improve20

the SAR capability to monitor soil moisture content. In particular, for cereal crops it is
possible to disregard the interaction between L-band SAR signal and crop canopy, at
least at HH polarization (Mattia et al., 2007). For this reason, the presented algorithm
focuses on soil moisture retrieval of cereal fields.

The rationale of the approach consists of exploiting soil moisture predictions, ob-25

tained at coarse spatial resolution by point scale hydrologic models (or by simplified mv
estimators), as a priori information for the SAR retrieval algorithm. An important as-
pect for the study is also to obtain indications about the errors affecting the modelling of
prior soil moisture predictions. The latter may arise from several factors including incor-
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rect meteorological forcing and model approximations. For this reason, more than one
source of meteorological data and two hydrologic models, namely the TOPMODEL-
based land-atmosphere transfer scheme (TOPLATS) (Famiglietti and Wood, 1994) and
the Process Oriented Multiscale EvapoTranspiration model (PROMET) (Mauser and
Schädlich, 1998; Mauser and Bach, 2008), have been employed. In addition, in or-5

der to assess the potential of simplified empirical approaches as proxy of soil moisture
predictions the use of the Antecedent Precipitation Index (API) (e.g. Crow and Zhan,
2007) has also been investigated.

The retrieval algorithm has been assessed on multi-temporal L-band SAR data
acquired by the German Aerospace Centre (DLR) E-SAR system during the10

AgriSAR 2006 campaign (Hajnsek et al., 2008). However, the algorithm has been
developed with a view to the possible future use of data acquired by the L-band space-
borne Phased Array type L-band Synthetic Aperture Radar (PalSAR) system at the
highest repetition time (i.e. default acquisition mode). In this respect, despite the fact
that the E-SAR airborne system acquired fully polarimetric L-band SAR data, the pre-15

sented algorithm exploits only single polarized HH multi-temporal SAR data.
In the next sections, the AgriSAR 2006 data set, the retrieval algorithm and the

approach adopted for the modelling of prior soil moisture values are described. Then,
the experimental assessment of the retrieval algorithm is discussed and conclusions
are summarized.20

2 The experimental data set

The ground and SAR data analyzed in this study were collected during the AgriSAR
campaign conducted over the Demmin agricultural site, in Mecklenburg-Western
Pomerania (Northern Germany), from April to July 2006 (Hajnsek et al., 2008). The
campaign was funded by the European Space Agency (ESA), coordinated by DLR and25

included the participation of 16 European Institutes. The experiment encompassed
multi-temporal airborne and spaceborne SAR and optical acquisitions together with
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extensive in situ measurements of bio-physical parameters. The principal objective of
the campaign was to assess the impact of the future ESA Sentinel-1 and -2 missions
for land applications and to provide a well documented database to investigate the bio-
physical parameter retrieval. In the following sections, a short summary of the data set
is reported, more details can be found in (Hajnsek et al., 2008).5

2.1 In situ data

The Demmin site is an agricultural area characterized by an average annual rainfall of
approximately 489 mm and an average temperature ranging between 18◦ in July and 1◦

in January. The study area, extending over approximately 25 km2 nearby the Goermin
village (53.98◦ N, 13.25◦ E), is cultivated mainly with winter wheat, winter barley, maize,10

winter rape and sugar beet. From 19 April through 26 July, in situ measurements of vol-
umetric soil moisture content and fresh biomass were collected, roughly every week,
over two winter wheat fields (namely field 230 and 250) and two winter barely fields
(namely field 440 and 450), all of which larger than 5 ha. Figure 1 shows a land use
map of the study area on which the location of the investigated fields is also identified.15

In total 44 observations (4 fields×11 dates) have been considered in the analysis. In ad-
dition, on field 250 there was a ground station with Time Domain Reflectometry (TDR)
probes continuously measuring soil moisture content at five different depths, a Bowen
Ratio Energy Balance (BREB) station and a Large Aperture Scintillometer (LAS) (a
detailed description of these stations is given in Pauwels et al., 2008). Figure 2 shows20

the temporal behavior of in situ soil moisture measurements for the above-mentioned
four cereal fields and also the continuous TDR observations at 0–9 cm. It is worth em-
phasizing that the study area is characterized by an almost flat topography (i.e. altitude
variations within ±60 m), due to which the variability of soil moisture content recorded
across the site, per each date, is generally limited within 4–6% [m3 m−3].25
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2.2 SAR data

A time series of 11 geocoded and coregistered L-band SAR images acquired, from
April to July 2006, by the airborne E-SAR system along the West-East track have been
used in the analysis. Data were acquired at incidence angles ranging between 25◦ and
55◦ and processed by DLR (Hajnsek et al., 2008).5

In order to better understand the extent to which it is possible to disregard the inter-
action between L-band SAR signal and wheat canopy, an assessment of the sensitivity
of L-band backscatter to surface parameters is carried out, in the next subsection.

2.2.1 Sensitivity study

Figures 3 and 4 show the sensitivity of L-band backscatter to soil moisture content10

and fresh biomass, respectively. The data refer to the entire experimental campaign
and were acquired over field 230. The sensitivity to mv is better at HH than at VV
polarization and better for fairly dry than wet soils. In average, there is an increment of
approximately 2 dB at HH polarization per 5 vol. % increments in soil moisture content.
However, there is also an important scatter of HH and VV backscatter, which is proba-15

bly partly due to calibration errors (error bars equal to ±1 dB) and partly to changes in
vegetation and in soil conditions. For instance, the crop canopy clearly attenuates the
VV backscatter as can be inferred by the fact that, in Fig. 3, the VV backscattering co-
efficients are lower than the HH ones (for bare fields the opposite is true). Conversely,
Fig. 4 shows that at H polarization there is a negligible interaction with the crop canopy20

as almost no correlation is found between the HH backscattering and the fresh biomass
sampled on fields 230. While Fig. 3 shows that the backscatter increases in average by
approximately 7 dB when the soil moisture increases from 5 to 35%, a strong increase
in the biomass leads to an almost zero increase in the backscatter (the contribution
from the ground corresponds to the lowest biomass value in Fig. 4). In other words,25

the wheat canopy has only a very minor impact on the HH backscatter value. This
conclusion is supported by previous modelling studies (e.g. Toure’ et al., 1994), which
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have pointed out that the soil contribution is dominant in the HH backscatter of winter
wheat, at least at low-medium incidence angles (e.g. 20◦–40◦). As a consequence, the
HH backscatter of cereal fields is expected to be well predicted simply by a surface
scattering model, such as the Integral Equation Model (IEM) (Fung and Chen, 1992),
particularly at low-medium incidence angles. IEM is an asymptotic surface scattering5

model developed to bridge the gap between Small Perturbation Method (SPM) model
and the Kirchhoff approximation (KA) (Ulaby et al., 1982), thus covering a wide range
of roughness conditions particularly at L-band. From an electromagnetic point of view,
the IEM essentially is a second iteration of the iterative Kirchhoff approximation (Liszka
and McCoy, 1982). One drawback of this approach is that the conditions for the con-10

vergence of the iterative series are not known a priori. It is worth noting that the IEM
model was built to predict both single and multiple scattering contributions to surface
scattering. It was expected to predict well both co and cross polarized components
over a quite wide range of roughness parameters. However, some of the assumptions
made in the IEM development have been subsequently recognized as simplistic by the15

same original authors (for a critical review of the IEM see Alvarez-Perez, 2001). An
improved version of IEM was released in Hsieh et al. (1997), a further version was
published in Chen et al. (2000). The expressions of cross-polarised scattering coeffi-
cient have been continuously amended until recently (Chen et al., 2003). However, the
expressions of co-polarized backscattering coefficient (i.e. single scattering contribu-20

tion) have not changed with respect to the original IEM. It is for this reason that in this
paper the expressions of the original IEM model are used.

3 The retrieval algorithm

The proposed algorithm transforms a temporal series of L-band SAR data, acquired
at HH polarization and low-medium incidence angles (approximatively 20◦–40◦) over25

cereal fields, into soil moisture values. According to the above-reported sensitivity
analysis, at L-band and HH polarization, there is a reduced sensitivity of backscatter to
the fresh biomass of cereal fields. On the contrary, the most important contribution to
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HH backscatter comes from the soil and its moisture variations. As a consequence, the
adopted approach disregards the presence of vegetation and inverts the IEM surface
scattering model by using a constrained optimization technique, which integrates a pri-
ori information on soil parameters (such as vertical surface roughness and soil moisture
content) to obtain robust and accurate estimates of soil moisture content (Mattia et al.,5

2006). More precisely, the technique minimizes the following cost function:

C=
1
N

N∑
n=1

|(σ0)n−Fn(θ, λ, pm=1,M )|2

(∆s(σ0)n)2
+

1
M

M∑
m=1

|pm−p̂m|
2

(∆i (pm))2
(1)

where N is the number of σ0 observations, F (·) is the IEM model (depending on the
SAR incidence angle and wavelength, i.e. θ and λ, and on the M surface parameters
pm), p̂m are the a priori estimates of surface parameters, ∆s(σ0) includes the backscat-10

ter calibration, statistical and model errors and ∆i (p) is the error affecting the prior
estimates of surface parameters. The latter basically consist of the surface height
standard deviation (s), the surface autocorrelation function, assumed exponential, the
surface correlation length (l ) and the soil relative dielectric constant (εr ). In particular,
the soil dielectric constant depends on the soil moisture content and on the soil texture15

composition. To relate the soil dielectric constant to the volumetric soil moisture con-
tent, the empirical expression derived by Hallikainen et al. (1985) has been employed.
This expression models the soil dielectric constant as a second order polynomial in
mv , which can be analytically inverted. In order to obtain estimates of soil moisture
content, the algorithm firstly estimates the soil dielectric constant, and then uses the20

inverted empirical expression of Hallikainen to derive the soil moisture content. To sim-
plify, it will be assumed that M=3 and (pm=1,M )=(s, l ,mv ). In the implementation of the
algorithm the Nσ0 observations have been obtained by using N multi-temporal L-band,
HH polarization, E-SAR backscattering. The use of multi-temporal data is beneficial for
the accuracy of the retrieved soil moisture content under the condition that the surface25

roughness remains almost constant during the time-span (T ) of the N acquisitions. For
instance, for a temporal series of N images, disregarding the presence of vegetation,
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the number of surface parameters to be estimated is N+2 (N soil moisture values and
2 surface roughness parameters, namely s and the correlation length l ). For N equals
to 1 there is the worst ratio (i.e. 1/3) between independent measurements and param-
eters to be estimated (highly inaccurate retrieval). Whereas for N large the ratio tends
to 1 (highly accurate retrieval). In order to minimize (Eq. 1) an iterative efficient ap-5

proach based on the Generalized Reduced Gradient Method (Lasdon et al., 1978) was
employed.

3.1 Numerical assessment of the algorithm performances

To characterize the performances of the developed retrieval algorithm a simulation
study was carried out. A synthetic data set of ground data was built simulating three10

different acquisition dates (i.e. N=3), Table 1 reports the average values of the consid-
ered surface parameters. Then, the IEM model was employed to obtain the backscatter
values at L-band, HH polarization and 23◦ incidence, associated to the surface param-
eters of Table 1. In order to simulate the presence of measurement errors (including
radiometric, statistical and model errors) a zero-mean Gaussian noise with increas-15

ing standard deviation (std, ranging from 0.5 to 1.5 dB) has been superposed to the
IEM predictions. A priori information for the retrieval algorithm have been obtained
by perturbing the surface parameters reported in Table 1 with a zero mean Gaussian
noise with increasing std (ranging from 10 to 30% of the total variability range of sur-
face parameters). It should be emphasized that the simulated a priori information still20

represents an ideal unbiased case (the error was at zero mean). Finally, the retrieval
algorithm has been applied to the synthetic data set and the results have been ana-
lyzed. A necessary condition that should be always fulfilled by the algorithm is that the
final error, computed as the rms error between retrieved and observed soil moisture
values, i.e. ∆f (mv ), is smaller than the initial error, computed as the rms error between25

prior and observed soil moisture values, i.e. ∆i (mv ). Of course, the higher the ratio
∆i (mv )/∆f (mv ), referred to as gain (G), the better the algorithm performs. For this
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reason, the G parameter has been adopted to synthetically represent the algorithm
performances in the numerical study. Figure 5 shows the gain parameter (G), obtained
by applying the retrieval algorithm over the synthetic data set, versus the initial rms
error ∆i (mv ) for increasing values of measurement errors, i.e. ∆s(σ0). Figure 5 shows
that the algorithm gain increases with the initial error ∆i (mv ) and that lower measure-5

ment errors ∆s(σ0) coincide with increasing values of G. In other words, if the prior
information on soil moisture content is already quite good (e.g. better than 5%), the
algorithm gain is expected to be marginal (i.e. G≈1) unless the measurement error is
very small (e.g. less or equal to 0.50 dB). On the other hand, for ∆i (mv ) approximately
equal to 7% and ∆s(σ0) equal to 0.75 dB, the expected gain is approximately 1.3, corre-10

sponding to a final rms error ∆f (mv ) approximately equal to 5%. The above-illustrated
characteristics of the algorithm together with the fact that its output provides soil mois-
ture maps at high resolution (e.g. 0.001 km2), prompts the following didactic example
on the potential of the method. Let us consider a study area of 25 km2 consisting of
three homogeneous sub-areas (of the same size): one fairly wet (e.g. 24%±2%), one15

medium wet (e.g. 17%±2%) and the third one fairly dry (e.g. 10%±2%). Over this area,
the SAR retrieval algorithm is applied using as a priori information an average value of
17% (in this case the rms error between the constant guess and the true soil moisture
values of the fairly wet, medium wet and dry areas is approximately 7%, 2% and 7%,
respectively). Under these circumstances, the algorithm is expected to retrieve ap-20

proximately the following mean and rms error values for the three classes: 24%±5%,
17%±2% and 10%±5%. Hence, the three sub-areas with different soil moisture con-
tent can be identified and separated (within 1-std). In other words, despite the gain of
the retrieval algorithm may often be relatively small (mainly due to the high measure-
ment error budget), still the asset of providing soil moisture maps at high resolution can25

be regarded as a valuable feature. In the following an experimental assessment of the
algorithm performances will be carried out.
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4 Modelling of prior soil moisture values

In order to obtain a priori information on soil moisture content, at coarse scale, the
TOPLATS and PROMET hydrologic models and the API index have been exploited.

In the next subsections the three approaches are briefly described, Sect. 4.4 then
illustrates a comparison between modelled and observed soil moisture values.5

4.1 TOPLATS

The TOPMODEL-based land atmosphere transfer scheme (TOPLATS) model has its
foundation in the concept that shallow groundwater gradients set up spatial patterns of
soil moisture that influence infiltration and runoff during storm events, and evaporation
and drainage between these events. The assumption is made that these gradients10

can be estimated from local topography (through a soil-topographic index Sivapalan
et al., 1987). From this foundation, the model was expanded to include infiltration
and resistance-based evaporation processes, a surface vegetation layer, and a surface
energy balance equation with an improved ground heat flux parameterization, and the
effect of atmospheric stability on heat fluxes (Famiglietti and Wood, 1994; Peters-Lidard15

et al., 1997). The model was originally developed to simulate the surface water and en-
ergy balance for warm seasons Famiglietti and Wood, 1994; Peters-Lidard et al., 1997.
Afterwards, winter processes (frozen ground and a snow pack), an improved water and
energy balance scheme for open water bodies, and a two-layer vegetation parame-
terization were added (Pauwels and Wood, 1999). For a detailed model description,20

we refer to Famiglietti and Wood (1994), Peters-Lidard et al. (1997), and Pauwels and
Wood (1999). Loaiza Usuga and Pauwels (2008) list an overview of the field experi-
ments and test sites for which the model has been applied, based on which it can be
concluded that the model can adequately simulate the partitioning of the energy and
mass balances into their different terms.25
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4.2 PROMET

The physically based land surface model PROMET (Process Oriented Multiscale Evap-
oTranspiration model) is used in the present study to simulate the surface energy bud-
get and exchange of water and matter within the soil-plant-atmosphere continuum. The
model describes the actual evapotranspiration and water balance at different scales,5

ranging from point scale, to microscale and mesoscale (Mauser and Schädlich, 1998;
Mauser and Bach, 2008). The model consists of a kernel which is based on five sub-
modules (radiation balance, soil model, vegetation model, aerodynamic model, snow
model) to simulate the actual water and energy fluxes and a spatial data modeler, which
provides and organizes the spatial input data on the field-, micro and macroscale. The10

simulations are made on hourly basis.
PROMET solves the surface energy balance in an iterative way. The ground heat

flux is estimated using a soil temperature model (Muerth, 2008). Actual evapotran-
spiration is simulated within PROMET using the Penman-Monteith equation (Monteith,
1965). Canopy surface resistance is simulated as a function of vegetation type using a15

resistance network approach (Baldocchi et al., 1987), while the soil resistance is esti-
mated based on the approach of Eagleson (1978). A four layer soil model (0–5, 5–20,
20–65, 65–200 cm) is used to calculate soil water fluxes and soil temperature profiles.
The change of volumetric soil moisture content, percolation, exfiltration, capillary rise
and surface runoff are explicitly considered. The infiltration into the soil layer is de-20

scribed using the model of Philip (1957). The soil water retention model of Brooks and
Corey (1964) is used to relate soil moisture content to soil suction head. A detailed
description of the model is given by Mauser and Schädlich (1998) and Mauser and
Bach (2008). A physical snow model extends PROMET to allow for simulations in cold
climates (Strasser and Mauser, 2001).25

PROMET simulations are based on GIS information as e.g. soil maps and land use
information. Meteorological forcing data might be either provided from station net-
works as well as from gridded forcing fields. PROMET has been extensively validated
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in different geographic locations in Central Europe (Upper Rhine Valley – 10×10 km2,
Bavarian Alpine Foreland – 200×100 km2, Upper Danube catchment – 76 000 km2,
Weser catchment – 35 000 km2) using evapotranspiration measurements of microme-
teorological stations at the local scale and by comparison to thermal remote sensing
informations at the regional scale (Mauser and Schädlich, 1998; Ludwig and Mauser,5

2000).
It provides interfaces to integrate remote sensing derived information into the model.

It has been used together with optical and microwave remote sensing data to im-
prove land surface simulations. Bach and Mauser (2003) used the model to improve
crop yield prediction and surface runoff prediction by combining PROMET results with10

optical (Landsat-TM) and microwave (ERS) remote sensing data. Schneider (2003)
used LANDSAT-TM data to determine vegetation model parameters and improve plant
growth simulations. Loew et al. (2007) compared PROMET simulations at different
spatial scales with soil moisture information derived from active microwave data (Loew
et al., 2006), and found a good agreement between the spatial patterns of observed15

and simulated soil moisture at multiple scales.

4.3 Antecedent soil moisture simulation

Precipitation information is available on a regular basis from a large number of stations.
Simple concepts to derive information on actual soil moisture status, based exclusively
on precipitation data, have therefore been developed. One simple approach is based20

on the concept of the so called Antecedent Precipitation Index (API). As the API is
exclusively based on precipitation data as model input, it has been widely used in
rainfall-runoff applications to parameterize the soil moisture conditions in hydrological
catchments (e.g. Sittner et al., 1969; Rose, 1998; Descroix et al., 2002; Vries and
Hromadka, 1993). The APIi for day i is defined as25

APIi=γiAPIi−1+Pi (2)
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where Pi is the observed precipitation [mm] on day i and γi is the corresponding API
recession coefficient at that day which is used to parameterize the loss of water in
the soil column due to evapotranspiration, groundwater recharge and lateral soil water
fluxes.

Given some information on the antecedent precipitation, one might use the API as a5

prior proxy for soil moisture conditions on an operational basis as precipitation informa-
tion is (at least) available in terms of short term forecasts on the global scale. However,
large uncertainties in API result from uncertainties in the available precipitation infor-
mation as well as in the parameterization of the corresponding recession coefficient
γ. Different approaches to parameterize γi have been proposed. Its value might vary10

in between 0.7 for dry conditions and 1.0 for wet soil conditions (Crow, 2007). An ex-
ponential decay of the form γ=e−δ has been proposed, whereas the factor δ is the
inverse of the characteristic time of soil moisture depletion. Its value might be empir-
ically calibrated or it might be parameterized using additional information like e.g. the
ratio of potential evapotranspiration to maximum available soil moisture (Chodhury et15

al., 1993; Descroix et al., 2002). In the present study we follow the parameterization
proposed by Crow (2007) whereas the variation of γi is defined as

γi=A+B cos (2πJD/365) (3)

with the parameters A=0.85 and B=0.1 and JD the julian day, which is a very simple
approach to roughly estimate the seasonal effects of evapotranspiration loss. The20

model parameters could be calibrated using available in situ soil moisture data. In
order to keep the model as general as possible, no calibration of the model is done for
the test site in the present study. The API modelling approach is used in the present
study to provide a further prior guess on soil moisture for the SAR based soil moisture
retrieval algorithm. Two sets of precipitation data (P ), acquired by two weather stations25

located approximately 10 km apart, were used to estimate two API series. The first
weather station (referred to as Goermin station) was located on the study area (nearby
the Goermin village), whereas the second one (referred to as Greisfwald station) was
located in the town of Greisfwald. In order to transfer the API values [mm] to volumetric
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surface soil moisture a linear regression between the TDR measurements, collected
at 5 cm depth on field 250, and API was calculated. Table 2 reports the parameters of
the linear fit, for the two computed API series, namely the API based on precipitation
measured by the Goermin and Greisfwald weather stations.

4.4 Comparison of modelled and observed soil moisture values5

In a previous study, Pauwels et al. (2008) have thoroughly investigated the water and
energy balance for a winter wheat of the Demmin site (i.e. field 250). In particular,
a remarkable agreement between the time series of TDR measurements reported in
Fig. 1 and TOPLATS and PROMET predictions, i.e. an rms error better than 4%, was
found. However, the objective of this section is to assess the extent to which point scale10

hydrologic model predictions can represent not only the temporal but also the spatial
variability of soil moisture content over the Goermin study area. For this reason, the
TOPLATS, PROMET and API predictions have been compared to in situ measure-
ments of volumetric soil moisture content (sampled at a soil depth of between 5 and
10 cm) collected over four different cereal fields during the entire AgriSAR 2006 cam-15

paign (see Fig. 1). In the analysis two sets of meteorological forcing data, acquired
by the weather stations located at the Goermin village and at the town of Greisfwald,
were employed. For each of the aforementioned simulated data sets, Table 3 reports
a comparison with the time series of mv measured in situ. The rms error (∆i (mv )),
the correlation (R) and the parameters of a linear fit between observed (i.e. X ) and20

modelled (i.e. Y ) soil moisture values are shown. In all but one case, i.e. TOPLATS
(Greisfwald), the mean soil moisture values predicted by the models underestimate the
observed ones (the bias ranges between 1 and 4%). The effect is more pronounced for
simulations based on Goermin than Greisfwald weather data (though, in general, the
impact of using meteorological data collected by a station located 10 km a part from25

the study area seems to be quite limited). The rms error of PROMET and TOPLATS
predictions (∆i (mv )) is always better than 5%, the R-values are higher than 0.8 and the

3493

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3479/2008/hessd-5-3479-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3479/2008/hessd-5-3479-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3479–3515, 2008

Soil moisture
retrieval

F. Mattia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

slope parameters range between 0.47 and 1.05. API predictions are affected by rms
errors larger than 6.0%, while the slope and correlation parameters are lower than 0.3
and 0.55, respectively. Under these circumstances, it is confirmed that API should be
regarded as a weak prior proxy for surface soil moisture conditions. Nevertheless, it
is worth emphasizing that the API asset is its simplicity and the fact that it requires as5

input solely precipitation information. On the contrary, SVAT models, such as PROMET
and TOPLATS, hold a strong potential to provide quite accurate (i.e. better than 5%)
prior estimates of mv , at least at coarse resolution. However, they require significant
more information on a specific site as model input (e.g. meteorological data, soil and
land cover maps, etc.). A drawback of these findings is that, according to the numerical10

analysis of Sect. 3.1, the mv prior predictions of PROMET and TOPLATS are too accu-
rate to represent a stringent test-bed for the SAR-retrieval algorithm. For this reason,
two further data sets, referred to as perturbed PROMET and perturbed TOPLATS, char-
acterized by a bias and an rms error of approximately 7% and 8%, respectively, have
been included in the analysis. These two perturbed data sets have been obtained by15

subtracting from the mv predictions of the PROMET and TOPLATS models a constant
value of approximately 5% (more precisely 4.98%). This choice was aimed at obtaining
two data sets affected by biases and rms errors higher than those obtained by means
of API but still characterized by high correlations with the mv in situ measurements.
Table 4 reports information similar to Table 3 but it refers to the data sets obtained by20

perturbed PROMET and perturbed TOPLATS (based on meteorological data acquired
at the Goermin weather station). Furthermore, Fig. 7 shows the scatterplot between
the soil moisture values simulated by all the illustrated modelling approaches, namely
the PROMET and TOPLATS (based on meteorological data acquired at the Goermin
and Greisfwakd weather stations), the API (based on meteorological data acquired25

at the Goermin and Greisfwald weather stations) and the perturbed PROMET and
TOPLATS (based on meteorological data acquired at the Goermin weather station),
and those measured in situ. Figure 7 shows that in general model predictions tend
to cluster around a few discrete values whereas the in situ measurements are evenly

3494

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/5/3479/2008/hessd-5-3479-2008-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/5/3479/2008/hessd-5-3479-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
5, 3479–3515, 2008

Soil moisture
retrieval

F. Mattia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

distributed. In addition, it is observed that the model underestimation is more important
for medium-high than for low mv values (similar results were found in Pauwels et al.,
2008).

5 Experimental assessment of the algorithm performances

The performances of the retrieval algorithm described in Sect. 3 have been assessed5

on the AgriSAR 2006 data set. Figure 6 shows a flow chart of the implemented algo-
rithm. Ancillary information concerning land cover and soil texture maps as well as the
initial guess values for vertical surface roughness (s) and soil moisture content (mv )
are required. Conversely, no a priori information on the correlation length l was used.
This is because: 1) it is extremely difficult to provide reliable values of l unless accurate10

in situ measurements had been carried out; 2) in the inversion procedure, the use of
l as a free parameter may allow to better match the observed SAR data with the IEM
model. For each run, 3 L-band, HH polarized, E-SAR images, acquired at subsequent
dates within a time-span (T ) of 21 days, were employed. As initial guess values for the
s parameter a constant value of 1.0 cm was adopted, since all the cereal fields were al-15

ready sown in April thus showing a fairly smooth surface roughness. Whereas, the data
sets listed in Tables 3 and 4 were employed as prior estimates of mv . For each one of
the simulated data set, Table 5 reports the comparison between SAR-retrieved and in
situ measured mv values. The rms error (∆f (mv )), the correlation (R) and the param-
eters of a linear fit between observed (i.e. X ) and SAR-retrieved (i.e. Y ) soil moisture20

values are shown. In addition, Fig. 8 shows the scatterplot between the retrieved and
measured mv values when using as initial soil moisture guess values all the modelling
approaches listed in Sect. 4.4. The results indicate that:

– for the case of non-perturbed initial mv guess values, the difference between the
mean of observed and retrieved soil moisture values ranges between 0.8 and25

2.2%, significantly smaller than the bias reported in Table 3. Whereas, in the
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case of perturbed PROMET and TOPLATS predictions, the bias reduces from
approximately 7% to 1.6% and 4%, respectively;

– the rms error reported in Table 5, i.e. ∆f (mv ), is always smaller than the cor-
respondent rms error reported in Tables 3 and 4, i.e. ∆i (mv ). The best perfor-
mances, in terms of algorithm gain, are observed when the perturbed PROMET5

and TOPLATS estimates are used as guess values, in these cases the retrieval
algorithm achieves a G parameter of approximately 1.4;

– the R coefficient is lower (or equal) than the correspondent values shown in Ta-
bles 3 and 4, when the mv guess values are provided either by TOPLATS or
PROMET models. The opposite is true when the prior estimates of mv are ob-10

tained by means of API estimator;

– non-optimal behaviour of the algorithm is observed in the two cases of API Goer-
min and API Greisfwald, where the prior estimates were not only biased but also
poorly correlated (i.e. R<0.55) with the in situ measurements.

In summary, the experimental analysis substantially confirms the characteristics of15

the retrieval algorithm as illustrated in Sect. 3.1. Besides, it is worth mentioning that
the algorithm showed a strong robustness versus the presence of biases in the prior
estimates of mv . Whereas, its performances were significantly lowered when the prior
estimates of mv were poorly correlated to the in situ measurements.

6 Conclusions20

The investigated retrieval algorithm uses prior information on soil moisture content at
coarse spatial scale (e.g. 25 km2) in order to transform a temporal series of 3 SAR im-
ages, acquired at L-band and HH polarization, into multi-temporal soil moisture maps
at high spatial resolution (e.g. 0.01 km2). In the present form, the retrieval algorithm ap-
plies to bare and cereal fields only and it has been tested for time series of SAR images25
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acquired over a time-span of three weeks. The results of the experimental analysis,
conducted over the data set acquired during the AgriSAR 2006 campaign and based on
prior estimates of soil moisture content obtained by means of TOPLATS and PROMET
hydrologic models and by means of the API estimator, showed that the algorithm has
always a gain (G) greater than 1 thus implying that it always improves the prior infor-5

mation. The best performances, in terms of the G parameter, were observed in the
case of perturbed PROMET and TOPLATS predictions, for which the prior information
was considerably biased but highly correlated (R≥0.8) with the in situ measurements.
In these cases, the algorithm was able to reduce the bias of PROMET and TOPLATS
predictions from approximately 7% to less than 2% and 4%, respectively. In addition,10

the rms error was reduced from approximately 8.2% to 5.6% and from 8.8% to 6.4%.
Conversely, when the prior information was not only biased but also poorly correlated
with the in situ measurements (as it is the case of prior information provided by the
API estimator) the algorithm marginally improved the initial error. In the intermediate
cases, when the prior information was highly correlated with in situ measurements and15

showed a relatively small bias, the algorithm reduced the bias (e.g. from approximately
4% to 2%) and marginally the rms error (e.g. from approximately 5% to 4%). Never-
theless, also in these cases it was argued that the algorithm can be quite useful in
identifying areas characterized by significantly different soil moisture content within the
swath area (e.g. 25 km2).20

Future work will be dedicated to apply the technique to PalSAR data and to assess
the use of other sources of prior soil moisture values, such as forecasts provided by
the European Centre for Medium-Range Weather Forecasts (ECMWF) or mv estimates
obtained at coarse scale by spaceborne radiometers (e.g. AMSR-E, or the MIRAS
system on board the satellite platform of the forthcoming Soil Moisture and Ocean25

Salinity (SMOS) Mission).
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Table 1. Mean values of synthetic ground data.

Soil parameters Date

1st 2nd 3rd

Surface height std (cm) 1.2 1.2 1.2
Correlation length (cm) 15.0 15.0 15.0
Real part of εr 6.0 11.0 17.0
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Table 2. TDR Soil moisture values versus API.

Weather stations mv values (Y ) versus API (X ): Y =A+BX

A (%) B R

Goermin 9.7 0.8 0.60
Greisfwald 9.6 0.7 0.65
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Table 3. Volumetric moisture content (mv ): hydrologic model predictions versus in situ mea-
surements.

Model Hydrologic model (Y ) vs. in situ measurements (X ): Y =A+BX

Mean X (%) Mean Y (%) A (%) B ∆i (mv ) (%) R

PROMET (Goermin) 15.5 13.14 4.01 0.59 4.35 0.85
TOPLATS (Goermin) 15.5 12.82 5.45 0.47 4.99 0.80
PROMET (Greisfwald) 15.5 14.47 4.09 0.67 4.01 0.81
TOPLATS (Greisfwald) 15.5 17.36 1.09 1.05 4.5 0.86
API (Goermin) 15.5 12.68 8.59 0.26 6.27 0.54
API (Greisfwald) 15.5 12.6 8.05 0.29 6.58 0.47
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Table 4. Volumetric moisture content (mv ): perturbed hydrologic model predictions versus in
situ measurements.

Model Perturbed hydrologic model (Y ) vs. in situ measurements (X ): Y =A+BX

Mean X (%) Mean Y (%) A (%) B ∆i (mv ) (%) R

Perturbed
PROMET (Goermin) 15.5 8.16 −0.97 0.59 8.22 0.85
Perturbed
TOPLATS (Goermin) 15.5 7.84 0.47 0.47 8.76 0.80
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Table 5. Volumetric moisture content (mv ): SAR retrieved values versus in situ measurements.

Models used to derive SAR retrieved (Y ) vs. in situ measurements (X ): Y =A+BX
the a priori information

Mean X (%) Mean Y (%) A (%) B ∆f (mv ) (%) R

PROMET (Goermin) 15.5 13.5 3.89 0.62 4.24 0.83
TOPLATS (Goermin) 15.5 13.39 5.95 0.48 4.82 0.77
PROMET (Greisfwald) 15.5 14.76 4.34 0.67 3.98 0.81
TOPLATS (Greisfwald) 15.5 17.6 2.21 0.99 4.41 0.86
API (Goermin) 15.5 14.04 7.92 0.39 5.7 0.57
API (Greisfwald) 15.5 14.2 8.38 0.38 5.87 0.53
Perturbed PROMET (Goermin) 15.5 13.9 5.95 0.52 5.56 0.62
Perturbed TOPLATS (Goermin) 15.5 11.6 5.05 0.43 6.36 0.64
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10 F. Mattia et al.: Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

Fig. 2. In situ measurements of volumetric soil moisture content (at
5-10 cm) sampled over four cereal fields (i.e. 230, 250, 440 and
450) and TDR measurements continuously collected over field 250.

Fig. 3. L-band E-SAR backscattering coefficient versus in situ mea-
sured soil moisture content. Data were acquired over the wheat field
230 during the entire growing season. Error bars accounting for the
σ0 calibration errors, i.e.± 1 dB, and a fit using a geometric model
(i.e. y = a0 xa1 + a2) for the HH (continuous line) andV V
(dashed line) backscatter are also shown.

Table 2. TDR Soil moisture values versus API.

weather mv values (Y) versus API (X): Y=A+BX
stations A (%) B R
Goermin 9.7 0.8 0.60

Greisfwald 9.6 0.7 0.65

Fig. 4. L-band, HH polarized E-SAR backscattering coefficient ver-
sus in situ measured fresh biomass. Data were acquired over the
wheat field 230 during the entire growing season. Error bars ac-
counting for theσ0 calibration errors, i.e.± 1 dB, and a fit using a
geometric model (i.e.y = a0 xa1 + a2) for theHH (continuous
line) backscatter are also shown.

Fig. 5. Gain of the retrieval algorithm versus initial error on soil
moisture content (∆i(mv)) for measurement errors (∆s(σ0)) rang-
ing from 0.5 to 1.5 dB.

Fig. 2. In situ measurements of volumetric soil moisture content (at 5–10 cm) sampled over
four cereal fields (i.e. 230, 250, 440 and 450) and TDR measurements continuously collected
over field 250.
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10 F. Mattia et al.: Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

Fig. 2. In situ measurements of volumetric soil moisture content (at
5-10 cm) sampled over four cereal fields (i.e. 230, 250, 440 and
450) and TDR measurements continuously collected over field 250.

Fig. 3. L-band E-SAR backscattering coefficient versus in situ mea-
sured soil moisture content. Data were acquired over the wheat field
230 during the entire growing season. Error bars accounting for the
σ0 calibration errors, i.e.± 1 dB, and a fit using a geometric model
(i.e. y = a0 xa1 + a2) for the HH (continuous line) andV V
(dashed line) backscatter are also shown.

Table 2. TDR Soil moisture values versus API.

weather mv values (Y) versus API (X): Y=A+BX
stations A (%) B R
Goermin 9.7 0.8 0.60

Greisfwald 9.6 0.7 0.65

Fig. 4. L-band, HH polarized E-SAR backscattering coefficient ver-
sus in situ measured fresh biomass. Data were acquired over the
wheat field 230 during the entire growing season. Error bars ac-
counting for theσ0 calibration errors, i.e.± 1 dB, and a fit using a
geometric model (i.e.y = a0 xa1 + a2) for theHH (continuous
line) backscatter are also shown.

Fig. 5. Gain of the retrieval algorithm versus initial error on soil
moisture content (∆i(mv)) for measurement errors (∆s(σ0)) rang-
ing from 0.5 to 1.5 dB.

Fig. 3. L-band E-SAR backscattering coefficient versus in situ measured soil moisture con-
tent. Data were acquired over the wheat field 230 during the entire growing season. Error
bars accounting for the σ0 calibration errors, i.e. ±1 dB, and a fit using a geometric model (i.e.
y=a0x

a1+a2) for the HH (continuous line) and VV (dashed line) backscatter are also shown.
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Fig. 2. In situ measurements of volumetric soil moisture content (at
5-10 cm) sampled over four cereal fields (i.e. 230, 250, 440 and
450) and TDR measurements continuously collected over field 250.

Fig. 3. L-band E-SAR backscattering coefficient versus in situ mea-
sured soil moisture content. Data were acquired over the wheat field
230 during the entire growing season. Error bars accounting for the
σ0 calibration errors, i.e.± 1 dB, and a fit using a geometric model
(i.e. y = a0 xa1 + a2) for the HH (continuous line) andV V
(dashed line) backscatter are also shown.

Table 2. TDR Soil moisture values versus API.

weather mv values (Y) versus API (X): Y=A+BX
stations A (%) B R
Goermin 9.7 0.8 0.60

Greisfwald 9.6 0.7 0.65

Fig. 4. L-band, HH polarized E-SAR backscattering coefficient ver-
sus in situ measured fresh biomass. Data were acquired over the
wheat field 230 during the entire growing season. Error bars ac-
counting for theσ0 calibration errors, i.e.± 1 dB, and a fit using a
geometric model (i.e.y = a0 xa1 + a2) for theHH (continuous
line) backscatter are also shown.

Fig. 5. Gain of the retrieval algorithm versus initial error on soil
moisture content (∆i(mv)) for measurement errors (∆s(σ0)) rang-
ing from 0.5 to 1.5 dB.

Fig. 4. L-band, HH polarized E-SAR backscattering coefficient versus in situ measured fresh
biomass. Data were acquired over the wheat field 230 during the entire growing season. Error
bars accounting for the σ0 calibration errors, i.e. ±1 dB, and a fit using a geometric model (i.e.
y=a0x

a1+a2) for the HH (continuous line) backscatter are also shown.
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Fig. 2. In situ measurements of volumetric soil moisture content (at
5-10 cm) sampled over four cereal fields (i.e. 230, 250, 440 and
450) and TDR measurements continuously collected over field 250.

Fig. 3. L-band E-SAR backscattering coefficient versus in situ mea-
sured soil moisture content. Data were acquired over the wheat field
230 during the entire growing season. Error bars accounting for the
σ0 calibration errors, i.e.± 1 dB, and a fit using a geometric model
(i.e. y = a0 xa1 + a2) for the HH (continuous line) andV V
(dashed line) backscatter are also shown.

Table 2. TDR Soil moisture values versus API.

weather mv values (Y) versus API (X): Y=A+BX
stations A (%) B R
Goermin 9.7 0.8 0.60

Greisfwald 9.6 0.7 0.65

Fig. 4. L-band, HH polarized E-SAR backscattering coefficient ver-
sus in situ measured fresh biomass. Data were acquired over the
wheat field 230 during the entire growing season. Error bars ac-
counting for theσ0 calibration errors, i.e.± 1 dB, and a fit using a
geometric model (i.e.y = a0 xa1 + a2) for theHH (continuous
line) backscatter are also shown.

Fig. 5. Gain of the retrieval algorithm versus initial error on soil
moisture content (∆i(mv)) for measurement errors (∆s(σ0)) rang-
ing from 0.5 to 1.5 dB.

Fig. 5. Gain of the retrieval algorithm versus initial error on soil moisture content (∆i (mv )) for
measurement errors (∆s(σ0)) ranging from 0.5 to 1.5 dB.
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Table 3. Volumetric moisture content(mv): hydrologic model predictions versus in situ measurements

Model Hydrologic model (Y) vs in situ measurements (X):Y = A + BX
MeanX(%) MeanY (%) A(%) B ∆i(mv) (%) R

PROMET (Goermin) 15.5 13.14 4.51 0.59 4.35 0.85
TOPLATS (Goermin) 15.5 12.82 5.45 0.47 4.99 0.80

PROMET (Greisfwald) 15.5 14.47 4.09 0.67 4.01 0.81
TOPLATS (Greisfwald) 15.5 17.36 1.09 1.05 4.5 0.86

API (Goermin) 15.5 12.68 8.59 0.26 6.27 0.54
API (Greisfwald) 15.5 12.6 8.05 0.29 6.58 0.47

Table 4. Volumetric moisture content(mv): perturbed hydrologic model predictions versus in situ measurements

Model Perturbed hydrologic model (Y) vs in situ measurements (X):Y = A + BX
MeanX(%) MeanY (%) A(%) B ∆i(mv) (%) R

Perturbed PROMET (Goermin) 15.5 8.16 -0.97 0.59 8.22 0.85
Perturbed TOPLATS (Goermin) 15.5 7.84 0.47 0.47 8.76 0.80

Fig. 6. Flow chart of the implemented SAR retrieval algorithm.
Fig. 6. Flow chart of the implemented SAR retrieval algorithm.
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Fig. 7. Scatterplot between hydrologic model predictions ofmv and in situ measurements. The data reported on the Y-axis are: (a) PROMET
predictions (based on Goermin weather station); (b) TOPLATS predictions (based on Goermin weather station); (c) PROMET predictions
(based on Greisfwald weather station); (d) TOPLATS predictions (based on Greisfwald weather station); (e) API predictions (based on
Goermin weather station); (f) API predictions (based on Greisfwald weather station); (g) perturbed PROMET predictions (based on Goermin
weather station); (h) perturbed TOPLATS predictions (based on Goermin weather station).

Fig. 7. Scatterplot between hydrologic model predictions of mv and in situ measurements. The data reported on the
y-axis are: (a) PROMET predictions (based on Goermin weather station); (b) TOPLATS predictions (based on Goermin
weather station); (c) PROMET predictions (based on Greisfwald weather station); (d) TOPLATS predictions (based on
Greisfwald weather station); (e) API predictions (based on Goermin weather station); (f) API predictions (based on
Greisfwald weather station); (g) perturbed PROMET predictions (based on Goermin weather station); (h) perturbed
TOPLATS predictions (based on Goermin weather station).
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Fig. 8. Scatterplot between SAR-retrieved values and in situ measurements. The data reported on the Y-axis were obtained using asmv

guess values: a) PROMET predictions (based on Goermin weather station); (b) TOPLATS predictions (based on Goermin weather station);
(c) PROMET predictions (based on Greisfwald weather station); (d) TOPLATS predictions (based on Greisfwald weather station); (e)
API predictions (based on Goermin weather station); (f) API predictions (based on Greisfwald weather station); (g) perturbed PROMET
predictions (based on Goermin weather station); (h) perturbed TOPLATS predictions (based on Goermin weather station).

Fig. 8. Scatterplot between SAR-retrieved values and in situ measurements. The data reported on the y-axis were
obtained using as mv guess values: (a) PROMET predictions (based on Goermin weather station); (b) TOPLATS
predictions (based on Goermin weather station); (c) PROMET predictions (based on Greisfwald weather station); (d)
TOPLATS predictions (based on Greisfwald weather station); (e) API predictions (based on Goermin weather station);
(f) API predictions (based on Greisfwald weather station); (g) perturbed PROMET predictions (based on Goermin
weather station); (h) perturbed TOPLATS predictions (based on Goermin weather station).
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